Big Data Big Questions
Tableau is huge for interacting with data and empower users to find insight in their data. So does this mean Tableau is the primary tool for Data Scientist? In this episode of Big Data Big Questions we tackle the question of “Is Tableau used for Data Science”.
What is Tableau
Tableau is a business intelligence software that allows for users to visualize and drill down into data. Data Users leverage Tableau highly for visualization portion of Data Science projects. The sources for data can be from databases, CSVs, or almost any source with structured data. So if Tableau is for analyzing and visualizing data is it a tool specific Data Scientist? Watch the video below to find out Tableau’s role in the world of Data Science.
Transcript – Tableau For Data Science?
Hi folks! Thomas Henson here with thomashenson.com, and today is another episode of Big Data Big Questions. Today’s question comes in from a user, and it’s around data science, and Tableau, and how those go together. But, before we jump into the question, if you have a question that you want to know about data engineering, IT, data science, anything related to IT, or just want to throw a question at me, put it in the comments section here below or reach out to me on Twitter at #BigDataBigQuestions. Or, thomashenson.com/big-questions. Ton of ways to get your questions here, answered right on this show, all you have to do is type away and ask.
Now, let’s jump into today’s question. Today’s question comes in from a YouTube viewer, and it’s about, hey, in data science, do you use Tableau? You can see the question here as it pertains to this, and so this is a question we started up this show doing, around data engineering, but now we’re really jumping towards, hey, what’s going on from a data science and just encompassing all of it? Today’s question, we’re going to talk about where’s Tableau used, right? A lot of people use Tableau. It’s really, really popular. But, is that really a tool that a data scientist is going to use? Should you invest your time as a data engineer or a data scientist aspiring or not aspiring to get into data science? Should you spend time learning about that tool?
My thoughts on Tableau are that it’s really good for giving information out to users that could be not necessarily data scientists. They could be users of it. They could be analysts. They could be somebody who just has a stake in their business. I’ve used it at a lot of different corporations that I’ve worked at, and companies, and companies, and organizations, and really what I see is those tools are more for the end user, for visualization. They may fall more in the data visualization bucket. We’ve talked about the three tiers of work. You have your data scientist, you have your data engineer, and your data visualization specialist, the person who’s making sure that, hey, at the end of the day, it’s great that we have all these algorithms that are showing us and being able to predict whatever we’re trying to look at in our data, but if we can’t sell that and can’t convey that to the people that need the data to make a decision on, then it’s just an experiment, it’s just us having fun doing research.
When it comes to an end product or being able to really sell your point, data visualization, I think that’s the bucket that Tableau fits in more than just traditional data science. Could be wrong. Let me know if I am here in the comments section below, but let me talk a little bit about my use case and where I’ve seen it. Like I said, I’ve used it in a lot of different organizations that I’ve worked with or even contracted with. One of the main use cases, I’ll give you an example. Let’s say that you’re a YouTube viewer. I’m not saying YouTube uses Tableau, this is just an example. I don’t want to give away too much information, insider. If you have a YouTube channel, think about if you want to see the videos that are coming in. You’re a user. You’re a publisher, a creator. You want to know. Here is all the videos that you have. Here’s how long they’re watched. Here’s all the demographics from behind the scenes that you can pull. Maybe the times that they were watched. How long they were watched, so on this video here, if people drop out after 30 seconds, I did something wrong there. Versus, how many people go through the end of it. Same thing, too. What you would do is, you would have all this information and aggregate all this data, and you maybe even pull some insights. Like, hey, what’s your average? We can do some real simple things, or you can do some complex things, too. Tableau is where you’re going to give the end user the access.
At least what I’ve seen a lot. There’s a big need to be able to do that and be able to pull that data. It gives you a way to, I wouldn’t say that a data scientist wouldn’t, per se, use that as their tool. It wouldn’t be their only tool. Maybe that’s the way that they aggregate and look at large amounts of data before they go in and start to pick and choose. I’m sure there’s some modules out there that are incorporating machine learning and deep learning. I will say, if you’re really looking from an AI perspective to jump into, it’s not just going to be about Tableau. I’m not saying that you shouldn’t get up to speed on Tableau, but I wouldn’t say that, hey, I’m a brand-new person graduating high school, graduating college, or somebody that sees it in their career and looking to go into data science, my choice would not be to jump in and learn Tableau. I would start learning a little bit more about Python, and algorithms, and maybe R, or some of the other higher-level languages to talk around machine learning and deep learning, versus saying, “Hey, this is the tool that’s going to kind of take me there.” Now, if you’re a data visualization person, or you want to get into big data from that perspective, there’s a lot of things that you can use Tableau to do. You might add it to your bucket. As far as we talk about on this show, how to accelerate your career or how to break into the big data realm, this is not one of those tools that I’m going to say, hey, this is the only choice you have. Not really going to be the one that’s probably going to make the more sense. It’s not going to be the game changer, like hey, this person’s certified in Tableau or is a Tableau wizard. If you’re applying for a job that’s all around Tableau then, definitely. As far as, I really want to get down into data science, and I really want to get deep in it, Tableau’s one of those things. Definitely probably going to use or come across tools that are similar to that, but it’s not going to be your mainstay, probably, where you’re writing your algorithms and doing your analytics.
That’s all for today. If you have any questions, make sure you put them in the comments section here below, and then make sure you click subscribe to follow this channel, so that you never miss an episode of Big Data Big Questions.
[Music]